Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.
The impact on the compressor performance is important for designing the inlet pipe of the centrifugal compressor of a vehicle turbocharger with different inlet pipes. First, an experiment was performed to determine the compressor performance from three cases: a straight inlet pipe, a long bent inlet pipe and a short bent inlet pipe. Next, dynamic sensors were installed in key positions to collect the sign of the unsteady pressure of the centrifugal compressor. Combined with the results of numerical simulations, the total pressure distortion in the pipes, the pressure distributions on the blades and the pressure variability in the diffuser are studied in detail. The results can be summarized as follows: a bent pipe results in an inlet distortion to the compressor, which leads to performance degradation, and the effect is more apparent as the mass flow rate increases. The distortion induced by the bent inlet is not only influenced by the distance between the outlet of the bent section and the leading edge of the impeller but also by the impeller rotation. The flow fields in the centrifugal impeller and the diffuser are influenced by a coupling effect produced by the upstream inlet distortion and the downstream blocking effect from the volute tongue. If the inlet geometry is changed, the distributions and the fluctuation intensities of the static pressure on the main blade surface of the centrifugal impeller and in the diffuser are changed accordingly.
WANG LeileiYANG CeZHAO BenLAO DazhongMA ChaochenLI Du