The effect of steam dilution on the formation of coke and minor products in 2-methylpenatne cracking on ultra stable HY at 673 K has been studied. The results show that steam dilution suppresses the formation of coke and minor aromatic products, but enhances the H/C atomic ratio of coke and the production of di-olefins. This and other evidences suggest that steam dilution enhances the desorption of coke precursors, diolefinic ions and cyclic ions, by inhibiting the further pathological reactions to produce aromatics and polyaromatics. These insights into the chemistry underlying coke formation in hydrocarbon cracking on solid acid catalysts can potentially be applied to the development of additives which inhibit coke formation and control catalyst deactivation.
Catalytic oxidation of NO by O2 over La0.8Sr0.2MnO3 was tested in a tubular reactor.The reaction temperature ranged from 373 to 473 K,space time from 0.090 to 0.720 s,inlet NO concentration from 300 to 2000μL/L, and O2 volume fraction from 3%to 9%.The steady-state conversion of NO was increased significantly with increasing reaction temperature and the space time,slightly with increasing the O2 concentration but decreased with increasing the inlet NO concentration at a lower temperature.Under the conditions of 0.720 s space time,500μL/L NO concentration, 5%O2 volume fraction and 473 K,NO conversion reached 90%.A kinetic model including a network of 12 elementary reactions with the desorption of NO2 as the rate-limiting step is established and fits the experimental data well.The activation energy of NO2 desorption from the catalyst surface is determined to be 101 kJ/mol.