A large-scale Si nanowire array (SiNWA) is fabricated with gold (Au) nanoparticles by simple metal-assisted chemical etching and metal reduction processes. The three-dimensional nanostructured Au/SiNWA is evaluated as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G is as low as 10-7 M, and the Raman enhancement factor is as large as 105 with a relative standard deviation of less than 25%. After the calibration of the Raman peak intensifies of rhodamine 6G and thiram, organic molecules could be quantitatively detected. These results indicate that Au/SiNWA is a promising SERS-active substrate for the detection of biomolecules present in low concentrations. Our findings are an important advance in SERS substrates to allow fast and quantitative detection of trace organic contaminants.
Porous silicon pillar array(PSPA) samples which are ideal substantial materials with dominant electronic and luminescence properties were prepared by surface etching method. ZnO nanorods with or without Mn doping grown uniformly and aligned onto PSPA regardless of lattice matching show various photoluminescence(PL)properties. The doped Mn ions in ZnO nanorods were directly observed by X-ray photoelectron spectroscopy(XPS),and ZnO structures were detected by X-ray diffraction(XRD). As the doping concentration increases,XRD peaks of ZnO nanorods shift to low angle. The influences of doping Mn ions on luminescence properties of ZnO nanorods were investigated. Except for the ultraviolet(UV) PL band, the broad PL band is observed at visible region. The band could be divided into three separate bands(orange, green and red) by Lorentzian deconvolution. The intensity of orange PL band firstly increases then decreases, and then gets the maximum at the doping Mn-to-Zn molar ratio of 2.0:100.0 which is the most effective doping concentration. The green PL band is attributed to zinc vacancy of ZnO, the orange PL band to Mn ions recombination of itself, and the red PL band to oxygen vacancy of ZnO, respectively. As the Mn-doped ZnO nanorods could emit yellow green luminescence excited by UV radiation, and doped Mn ions could improve the color rendering index of the luminescence, the nanorods could be used as promising white-light emitters in the future.