论文基于电场-化学场-机械场耦合作用机理,采用数值模拟方法,研究离子交换膜金属复合材料(I-onic Polymer Metal Composites简称IPMCs)宏观变形的细观机理.借用大型商业有限元软件ANSYS开发平台,结合MATLAB编制用户子程序,制定了数值分析流程,给出了典型IPMC悬臂梁宏观挠曲变形结果.文章重点研究了IPMC板迭层结构的输出力效率和非均匀挠曲变形细观机理的宏观分析方法,计算结果与实验比较以显示数值方法的正确性.文章的研究结果对材料工作者合理的制作IPMC致动器产品,具有理论指导意义.
A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, usually referred to as the failure surface, are obtained from transformation of an interval variable to a normalized one. In order to minimize the computational cost, two algorithms for optimizing the calculation steps have been proposed. The monotonicity of the objective function can be determined from narrowing the scope of interval variables in normalized infinite space by incorporating the algorithms into the computational scheme. Two examples are used to illustrate the operation and computational efficiency of the approach. The results of these examples show that the proposed algorithms can greatly reduce the computation complexity without sacrificing the computational accuracy. The advantage of the proposed scheme can be even more efficient for analyzing sophistic structures.
Ionic Polymer-Metal Composites (IPMC) is an emerging class of Electro-Active Polymer (EAP) materials. IPMC has attractive features, such as high sensitivity and light weight, which are useful for developing novel designs in the fields of bionic actuators, artificial muscles and dynamic sensors. A Finite Element (FE) model was developed for simulating the dynamic electro-mechanical response of an IPMC structure under an external voltage input. A lumped Resisto^Capacitor (RC) model was used to describe the voltage-to-current relationship of a Nation IPMC film for the computation of electric field intensity. Moreover, the viscoelastic property of the IPMC film was considered in the model and the non-uniform bending behavior was also taken into account. Based on the proposed model and the assumption that the thicknesses of the two electrodes are the same and uniform, the optimal coating thickness of the IPMC electrode was determined. It was demonstrated that the dynamic electro-mechanical response of the IPMC structure can be predicted by the proposed FE model, and the simulation results were in good agreement with the experimental findings.