In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a # b. Here, Mp(a, b) and T(a, b) are the p-th power and Seiffertmeans of two positive numbers a and b, respectively.
we study the monotonicity of certain combinations of the Gaussian hypergeometric functions F(-1/2,1/2;1;1- xc) and F(-1/2- δ,1/2 + δ;1;1- xd) on(0,1) for given 0 < c 5d/6 < ∞ andδ∈(-1/2,1/2),and find the largest value δ1 = δ1(c,d) such that inequality F(-1/2,1/2;1;1- xc)
We study the quotient of hypergeometric functions in the theory of Ramanujan's generalized modular equation for a ∈ (0, 1/2], and find an infinite product for- mula for μ1/3(r) by use of the properties of μ*a(r) and Ramanujan's cubic transformation. Besides, a new cubic transformation formula of hypergeometric function is given, which complements the Ramanujan's cubic transformation.