We analyze universal conditions where the l_1 norm and relative entropy of coherence are amplified and frozen under identical bit-flip channels;that is,using pre-measurements(quantum weak measurements or quantum measurement reversals) on the systems before undergoing local bit-flip channels.With the option of quantum weak measurements or quantum measurement reversals,the measurement strength and the success probability are all determined by the initial state of the quantum system.
In this letter,we use quantum description and the Gaussian state to study reflective ghost imaging with two classical sources,and to provide their expressions.We find that the reflective ghost imaging of a roughsurfaced object,using Gaussian-state phase-insensitive or classically correlated phase-sensitive light,can be expressed in terms of the phase-insensitive or phase-sensitive cross-correlations between the two detected fields,including a background term.Moreover,reflective ghost imaging with two classical Gaussian-state lights is shown to have similar features as spatial resolution and field of view.
We study the dynamics of two entangled atoms interacting with a common structured reservoir. By means of the exact solution of atomic dynamics, we show a novel quantum interference controlled by the relative phase of initial entangled state of the atoms. The quantum interference has a great influence on trapped excited-state population and stationary entanglement of the atoms. In particular, we construct an explicit condition under which atomic stationary entanglement can grow over their initial value.
In this letter, we analyze the effects of light intensity find that the brightness of reflective ghost image can on reflective ghost imaging with thermal source. We be changed by modulating the light intensity of the source and the splitting ratio of the beam splitter. The signal-to-noise ratio will be improved by increa.sing the light intensity of the source. More important, we can obtain the reflective ghost image with high image quality by adopting a low light intensity signal beam and a high light intensity reference beam, which is better than the classical optical imaging, because it can reduce the effects of light on the object.