The latest version of sea spray flux parameterization scheme developed by Andreas is coupled with the PSU/NCAR model MM5 in this paper. A western Pacific tropical cyclone named Nabi in 2005 is simulated using this coupled air-sea spray modeling system to study the impacts of sea spray evaporation on the evolution of tropical cyclones. The results demonstrate that sea spray can lead to a significant increase of heat fluxes in the air-sea interface, especially the latent heat flux, the maximum of which can increase by up to about 35% - 80% The latent heat flux seems to be more important than the sensible heat flux for the evolution of tropical cyclones. Regardless of whether sea spray fluxes have been considered, the model can always simulate the track of Nabi well, which seems to indicate that sea spray has little impact on the movement of tropical cyclones. However, with sea spray fluxes taken into account in the model, the intensity of a simulated tropical cyclone can have significant increase. Due to the enhancement of water vapor and heat from the sea surface to the air caused by sea spray, the warm core structure is better-defined, the minimum sea level pressure decreases and the vertical speed is stronger around the eye in the experiments, which is propitious to the development and evolution of tropical cyclones.
An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the MM5 model with the proposed scheme, numerical simulations of a snowstorm event that occurred over southern China on 28-29 January 2008 and of Typhoon Haitang (2005) are conducted. The results indicate that during the snowstorm event, the atmosphere was convectively stable in the vertical direction but with conditional symmetric instability (CSI) in the lower troposphere, and when the area of CSI developed and extended to upper levels, strong rising motion occurred and triggered the release of large amount of energy, producing enhanced convective precipitation with the total precipitation much closer to the observation. The development and strengthening of CSI corresponded to changes in the intensity of snowfall, convergence, and ascending motions of air, revealing that CSI was responsible for the initiation and growth of the snowstorm. The results from a 72-h explicit simulation of Typhoon Haitang indicate that CSI occurred mainly at lower levels with a well-defined spiral structure, and it tended to have a larger impact on the intensity of typhoon than on its track. The minimum pressure at the typhoon center for the 72-h runs with the integrated vertical-slantwise convective parameterization scheme was on average 3 hPa (maximum 8 hPa) lower than that from the runs with only the vertical cumulus parameterization scheme. Introducing the influence of CSI into the model has improved the warm core structure at the middle and upper levels of the typhoon, with stronger and persistent upward motions causing increased precipitation, and the latent heat released through convection in turn made the typhoon develop further.