The kinetics of the decomposition of acid dissolved titanium slag with a sodium hydroxide system under atmospheric pressure was studied. The effect of reaction temperature, particle size and NaOH-to-slag mass ratio on titanium extraction was investigated. The results show that temperature and particle size have significant influence on titanium extraction. The experimental data of titanium extraction show that the shrinking core model with chemical reaction controlled process is most applicable for the decomposition of slag, with an apparent activation energy of 62.4 kJ.mol^-1. Approximately 85 wt.%-90 wt.% of the titanium can be extracted from the slag under the optimal conditions. In addition, the purity of titanium dioxide obtained in the product is up to 98.5 wt.%.
Preparing titanium dioxide from titania-rich slag (TiO2 73wt%) by molten NaOH method has been developed. The effects of temperature and reaction time on the titanium conversion were investigated. The results showed that temperature had significant influence on the titanium conversion as well as the structure of the product. About 92% of titanium in the titania-rich slag could be converted after reacting with NaOH at 500℃ for 1 h. Metatitanic acid was formed through the steps of washing treatment, acid dissolution, and hydrolysis. Well-dispersed spherical titanium dioxide particles with an average size of 0.1-0.4μm can be obtained by calcination of metatitanic acid. In addition, the content of titanium dioxide in the product is up to 98.6wt%, which can be used as pigments after further treatment of coating and crushing.
Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.