Clonal selection feature selection algorithm (CSFS) based on clonal selection algorithm (CSA), a new computational intelligence approach, has been proposed to perform the task of dimensionality reduction in high-dimensional images, and has better performance than traditional feature selection algorithms with more computational costs. In this paper, a fast clonal selection feature selection algorithm (FCSFS) for hyperspectral imagery is proposed to improve the convergence rate by using Cauchy mutation instead of non-uniform mutation as the primary immune operator. Two experiments are performed to evaluate the performance of the proposed algorithm in comparison with CSFS using hyperspectral remote sensing imagery acquired by the pushbroom hyperspectral imager (PHI) and the airborne visible/infrared imaging spectrometer (AVlRIS), respectively. Experimental results demonstrate that the FCSFS converges faster than CSFS, hence providing an effective new option for dimensionality reduction of hyperspectral remote sensing imagery.