The Milky Way is a spiral galaxy with the Schechter characteristic luminosity L*,thus an important anchor point of the Hubble sequence of all spiral galaxies.Yet the true appearance of the Milky Way has remained elusive for centuries.We review the current best understanding of the structure and kinematics of our home galaxy,and present an updated scientifically accurate visualization of the Milky Way structure with almost all components of the spiral arms,along with the COBE image in the solar perspective.The Milky Way contains a strong bar,four major spiral arms,and an additional arm segment(the Local arm)that may be longer than previously thought.The Galactic boxy bulge that we observe is mostly the peanut-shaped central bar viewed nearly end-on with a bar angle of^25°-30°from the SunGalactic center line.The bar transitions smoothly from a central peanut-shaped structure to an extended thin part that ends around R^5 kpc.The Galactic bulge/bar contains^30%-40%of the total stellar mass in the Galaxy.Dynamical modelling of both the stellar and gas kinematics yields a bar pattern rotation speed of^35-40 km s-1 kpc-1,corresponding to a bar rotation period of^160-180 Myr.From a galaxy formation point of view,our Milky Way is probably a pure-disk galaxy with little room for a significant merger-made,"classical"spheroidal bulge,and we give a number of reasons why this is the case.
To promote the understanding of massive star formation processes, we have studied the 6.6 GHz methanol (CH3OH) masers and their environments—the dense cores and the outer regions of the molecular cloud. The physics of the CH3OH maser or the thermal emission formation region is studied by fitting the observational data of the 6.6 GHz 51–60A+ and the 107 GHz 31–40A+CH3OH maser emission, using the radiative transfer calculations. The type II characteristics of the 6.6 GHz CH3OH maser are confirmed by the calculation results. A greater intensity of the radiation field leads to an increase in the peak intensity of the maser; however, high densities tend to turn off the maser. The calculation results show that to be a maser the 6.6 GHz CH3OH emission needs a radiation field of 150–300 K and a density not higher than 107cm?3, while the 107 GHz emission requires a radiation field of 210–300 K and a density not higher than 3×106 cm?3. The 6.6 GHz line is maser towards all six studied sources, while the 107 GHz line is maser towards Cep A only. Moreover, the former’s intensity is much stronger than the latter. The radiative transfer calculations also indicate that the 6.6 GHz maser emission is so strong that the requirements of its formation (e.g. the radiation field, the density and the kinetic parameters) can only be satisfied at a certain stage of the processes of the massive star formation. Therefore it is often used as one of the most prominent tracers for the massive star formation regions. The calculation results of the simutaneous observations of (1,1) through (4,4) inversion lines of the ammonia (NH3) indicate that both the temperature and the density in the 6.6 GHz CH3OH maser formation regions are higher than that of the NH3 line formation regions. Furthermore, the common fact of |Visr(CO)| > |Visr(NH3)|>|Visr(CH3OH 6.6GHz maser)| in all six sources implies the ongoing developing trends of those gas flows driven by the masers.