This paper focuses on studying the integration method of a generalized Birkhoffian system.The method of variation on parameters for the dynamical equations of a generalized Birkhoffian system is presented.The procedure for solving the problem can be divided into two steps:the first step,a system of auxiliary equations is constructed and its general solution is given;the second step,the parameters are varied,and the solution of the problem is obtained by using the properties of generalized canonical transformation.The method of variation on parameters for the generalized Birkhoffian system is of universal significance,and we take a nonholonomic system and a nonconservative system as examples to illustrate the application of the results of this paper.
The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.
For an in-depth study on the integration problem of the constrained mechanical systems the method of integration for the Birkhoffian system with constraints is discussed and the method of variation of parameters for solving the dynamical equations of the constrained Birkhoffian system is provided.First the differential equations of motion for the constrained Birkhoffian system as well as for the corresponding free Birkhoffian system are established.Secondly a system of auxiliary equations is constructed and the general solution of the equations is found.Finally by varying the parameters and utilizing the properties of the generalized canonical transformation of the Birkhoffian system the solution of the problem can be obtained.The proposed method reveals the inherent relationship between the solution of a free Birkhoffian system and that of a constrained Birkhoffian system. The research results are of universal significance which can be further used in a variety of constrained mechanical systems such as non-conservative systems and nonholonomic systems etc.