The School of Nuclear Engineering and Technology at the East China Institute of Technology cooperated with the China Institute of Atomic Energy to investigate the high spin states of 84Sr. The study is reported in Volume 53 (October, 2010) of the SCIENCE
Total-Routhian-Surface calculations have been performed to investigate the deformation and alignment properties of the No isotopes. It is found that normal deformed and superdeformed states in these nuclei can coexist at low excitation energies. In neutron-deficient No isotopes, the superdeformed shapes can even become the ground states. Moreover, we plotted the kinematic moments of inertia of the No isotopes, which follow very nicely available experimental data. It is noted that, as the rotational frequency increases, alignments develop at hω = 0.2- 0.3 MeV. Our calculations show that the occupation of the νj15/2 orbital plays an important role in the alignments of the No isotopes.
The direct proton capture and resonance proton capture properties of stellar reactions 22Mg(p,γ)23Al and 26Si(p,γ)27P are studied by employing a mean-field potential obtained from the Skyrme-Hartree-Fock(SHF) model.Calculations with the SHF potential reproduce well the loosely-bound structure of the ground states as well as the widths of the resonant states in these nuclei.With the obtained potential we estimate the reaction rates of direct proton capture and resonance proton capture to nuclei 23Al and 27P.The effect of the 27P loosely-bound structure on the S factor of the direct proton capture is also discussed.
Total Routhian Surface (TRS) calculations have been performed for even-even nuclei along proton drip line to study nuclear ground-state deformations, as well as the odd proton nuclei Ho and Tm isotopes. The drip line nuclei show the expected shape transition with the shell e?ects. Ground-state shape changes from prolate to oblate at 143Ho and 145Tm in these two isotopes, which is due to the γ instability around N =76.
Shell-model studies on the N =14 and 16 shell closures in neutron-rich Be, C, O and Ne isotopes are presented. We calculate, with the WBT interaction, the excited states in these nuclei. The calculations agree with recent experiment data. Excited energies and B(E2) values are displayed to discuss the shell closures. Our results support the N =16 shell closure in these isotopes, while indicating a disappearance of N =14 shell closure in Be and C isotopes.
A systematic study of global properties of superheavy nuclei in the framework of the Liquid Drop Model and the Strutinsky shell correction method is performed. The evolution equilibrium deformations, TRS graphs and α-decay energies are calculated using the TRS model. The analysis covers a wide range of even-even superheavy nuclei from Z =102 to 122. Magic numbers and their observable influence occurring in this region have been investigated. Shell closures appear at proton number Z =114 and at neutron number N =184.