A laboratory experiment was carried out to extract iron from oolitic iron ore by a deep reduction and magnetic separation technique. The raw coal with fixed carbon of 66.54% was used as the reductant. The iron was successfully extracted from the oolitic iron ore which otherwise is nearly impossible to be separated due to its extremely fine-grain and mosaic nature. The results showed that an iron recovery rate of 90.78% and an iron content of 92.53~ of iron concentrate could be obtained by such a technique. The optimized roast temperature is 1 200℃ and time is 60 min. The subsequent magnetic separation was performed by using a magnetic field intensity of 111 kA · m^-1 and a grinding fineness less than 45 μm of 96. 19% for the sintered product.
Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reduction temperature, reduction time, C/O mole ratio, and CaO content on the metallization degree and iron recovery were investigated in detail. Experimental results show that reduced products with the metallization degree of 95.82% could be produced under the optimal conditions (i.e., reduction temperature, 1250℃; reduction time, 50 min; C/O mole ratio, 2.0; and CaO content, 10wt%). The magnetic concentrate containing 89.63wt% Fe with the iron recovery of 96.21% was obtained. According to the mineralogical and morphologic analysis, the iron minerals had been reduced and iron was mainly enriched into the metallic iron phase embedded in the slag matrix in the form of spherical particles. Apatite was also reduced to phosphorus, which partially migrated into the metallic iron phase.
The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis,scanning electron microscope(SEM)and energy dispersive X-ray analysis(EDXA).The smelting reduction mechanism of chromite in blast furnace was primarily discussed.