The formation of dipeptides from amino acids can be driven by hydroxyapatite at a relatively low temperature in air. For example, the formation of (Ala)2 from Ala is induced on hydroxyapatite at 110°C with considerable yield. Typically, condensing agents, high temperatures (>250°C) or high pressures (>25 MPa) are required to drive the condensation of amino acids. Similar effects are observed in the condensation of Gly, Glu and Asp. Experiments demonstrate that hydroxyapatite is an effective inorganic catalytic agent, reducing the activation barrier for the formation of dipeptides by more than 50%. HAP promotes condensation by adsorbing amino acid monomers in an organized manner, which decreases the distance between amino and carboxyl groups on neighboring molecules and extends the contact time of the reaction groups. This work provides a chemical understanding of the primitive condensation of amino acids and reveals a mechanism for enhancement of mineral catalysts. It is important that the conditions used for hydroxyapatite-assisted dipeptide formation are not harsh and can be readily achieved, revealing a possible mechanism for the chemical evolution of biomolecules over geologic ages.
Biological mineral generation via an amorphous precursor is a topic of great current interest. Various factors such as the temperature, solution composition and presence of organic molecules can influence this important inorganic process. Here we demonstrate that this mineral transformation can actually readily be regulated by solution viscosity, a fundamental but often overlooked property. In our experiment, amorphous calcium carbonate (ACC), a key model compound in biomimetic mineralization studies, is synthesized and dispersed into inert dispersants with different viscosities and the crystallization process is examined by using FT-IR spectroscopy and XRD. It is found that the inhibition of the transformation of ACC becomes more significant with increasing fluid viscosity. This phenomenon can be explained by the differences in ion diffusion in different media. Furthermore, the resulting crystals always have different morphologies and size distributions although they all have the calcite structure. This study implies that the importance of the fluid medium cannot be ignored in building a complete understanding of biological control of biomimetic crystallizations.
XIE YiDong, XU XuRong & TANG RuiKang Center for Biomaterials and Biopathways and Department of Chemistry, Zhejiang University, Hangzhou 310027, China