Some basic problems on the level set methods were discussed, such as the method used to preserve the distance junction , the existence and uniqueness of solution for the level set equations. The main contribution is to prove that in a neighborhood of the initial zero level set, the level set equations with the restriction of the distance function have a unique solution, which must be the signed distance function with respect to the evolving surface. Some skillful approaches were used: Noticing that any solution for the original equation was a distance function, the original level set equations were transformed into a simpler alternative form. Moreover, since the new system was not a classical one, the system was transformed into an ordinary one, for which the implicit function method was adopted.