Field experiments were conducted during 2008-2010 to investigate the ef- fects of NPK fertilization on seed yield and economic benefit of a new hybrid cultivar of winter oilseed rape (Brassica napus L.) - Xiangzayou763, and to determine the optimum NPK ratio and dose in Hunan, China. The results showed that NPK ratio (1:0.50:0.50) with 180 kg/hm2 N, 90 kg/hm2 P2O5 and 90 kg/hm2 K20 was the optimum combination for the highest seed yield (2 231.13 kg/hm2) and economic benefit (9 816.97 Yuan/hm2), of which 1 641.23 Yuan/hm2 being set for fertilizer in- vestment (VCR=4.11). Besides, the effects of N, P and K fertilizers on seed yield and oil production of winter oilseed rape were not identical. N had the greatest ef- fect on plant growth of winter oilseed rape, followed by P and K. Total leaf number, green leaf number, leaf length and width, rhizome diameter, branch number, dry weight per plant and other agronomic characters in high N treatments were higher than those in low N treatments. By correlation and path analysis of yield components, the contribution rate to seed yield was found: effective silique number per plant〉seed number per silique〉l 000-seed weight.
[Objective] This assay was to explore the contribution of enzymes ac- counting for nitrogen reutilization in two Brassica napus varieties No.6 (low nitrogen use efficiency) and No.2 (high nitrogen use efficiency). [Method] We measured the yield, transportation and accumulation of grain nitrogen, loss of leaf nitrogen and ni- trogen use efficiency (NUE) in the two rape varieties, by inhibiting proteolytic en- zyme (PE), glutamine synthetase (GS) and glutamate synthetase (GOGAT) and la- beling with lSN. [Result] Under GOGAT inhibitor treatment, both of the two varieties presented minimum NUE, yield and nitrogen transportation in grain and maximum ni- trogen loss in leaf. The effect of PE inhibitor was the second greatest, and that of GS inhibitor was the lowest. Moreover, 80% of the nitrogen that had been accumu- lated in leaf was transported out during late growth stage, and 50% to 70% of the grain nitrogen derived from the nitrogen in vegetative organs. The two varieties ex- hibited the same tendency. Rape variety No.2 had higher yield, grain nitrogen accu- mulation and lower nitrogen loss compared with No.6. [Conclusion] GOGAT has the greatest effect on the accumulation of grain nitrogen, yield and nitrogen reutilization in rape. Different enzyme activity may be the major factor resulting in different nitro- gen rautilization in the two rape varieties. Nitrogen stored in leaf during early growth stage is mainly used for nitrogen remobilization. A large proportion of grain nitrogen derives from vegetative tissues.
【目的】研究了进一步解析乙烯对油菜生长后期硝态氮(NO_3~–)再利用的影响,揭示植株生长后期氮素再利用的生理机制。【方法】以氮高效油菜品种湘油15(27号)与氮低效油菜品种814(6号)为试验材料,在15mmol/L氮水平下,每7天浇灌一次50 m L 100μmol/L 1-氨基环丙烷-1-羧酸(1-am-inocyclopropane-1-carboxylic acid,简称ACC),研究ACC对植物生长后期(花期、收获期)氮素再利用的影响及其与氮素利用效率(NUE)的关系。并用拟南芥野生型(col.0)和突变体(nrt1.5)材料作为验证,分别于玻璃顶网室和22℃恒温培养室进行砂培试验。【结果】ACC处理显著抑制了油菜Bn NRT1.5的表达,且植株的衰老可以显著诱导Bn NRT1.5的表达。相对于对照处理,ACC处理植株韧皮部汁液NO_3~–的再转运能力显著降低,导致下部叶NO_3~–含量显著升高,中部叶NO_3~–含量显著下降,上部叶NO_3~–含量无显著变化,进而导致植株含氮量和籽粒含氮量显著提高,以及以生物量和籽粒产量为基础的氮素利用效率(NUE)显著降低。由此推测,油菜生长后期氮素的再利用能力受到NRT1.5基因的显著调控。拟南芥野生型和突变体材料的验证结果表明,相对于拟南芥野生型(col.0)材料,拟南芥nrt1.5植株生长后期相对于col.0有更多的NO_3~–累积在植株衰老叶片中,更少的NO_3~–通过韧皮部转运到生长旺盛的新叶,植物生长后期氮素从老叶向新叶转运的再利用能力显著降低。【结论】油菜生长后期氮素的再利用能力受到ACC的显著调控,油菜和拟南芥NRT1.5基因表达量分别受到抑制或者发生基因突变时,会导致植株韧皮部汁液NO_3~–再转运量减少,更多NO_3~–累积在衰老叶片中而不能得以高效的再利用。因此,调控油菜生长后期NRT1.5的表达,提高油菜生长后期氮素的再转运和利用可以作为提高氮素利用效率的有效手段。