A method of direct contact membrane distillation (DCMD) with a self-made hollow polyvinylidene fluoride membrane was applied to prepare high concentration polyaluminum chloride (PACl) with high Alb content based on chemical synthesis. The permeate flux and Al species distribution were investigated. The experimental results showed that the permeate flux decreased from 14 to 6 kg/(m2·hr) at the end of the DCMD process, which can be mainly attributed to the formation of NaCl deposits on the membrane surface. The Alb content decreased slightly, only from 86.3% to 84.4%, when the DCMD experiment finished, correspondingly the Alc content increased slightly from 7.2% to 8.5%, and the Ala content remained at 7% during the whole DCMD process. A PACl with Alb content of 84% at total aluminum concentration 2.2 mol/L was successfully prepared by the chemical synthesis-DCMD method.
A polyaluminium chloride solution with high Al 13 content self-prepared was used as material for preparing the spherical γ-Al 2 O 3 by the sol-gel and oil-drop method. Polyethylene glycol with different molecular mass was used as surfactant to investigate the effect on property of γ-Al 2 O 3 . The physical property was characterized by 27 Al NMR (nuclear magnetic resonance) spectra, X-ray diffraction, FT-IR (Fourier transform infrared spectroscopy) and TG-DTA (thermogravimetric-differential thermal analysis). The results showed that surface area, pore volume and pore size of γ-Al 2 O 3 all increased with the increase of polyethylene glycol molecular mass in the experimental research range, and polyethylene glycol 10000 was the most suitable pore forming additive. γ-Al 2 O 3 with surface area of 339 m 2 ·g 1 , pore volume of 0.59 cm 3 ·g 1 and pore diameter of 6.9 nm were obtained at 450 °C.