The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with maximum at C18(or C19) and n-C27 –n-C31 as well as at C29(or C31). The short-chain alkanes suffered from significant losses due to their slow deposition in the water column, and their presence with a slight even carbon predominance in shallow seafloor sediments was ascribed mainly to the direct input from the benthos. The long-chain alkanes with odd predominance indicate transportion of terrigenous organic matter. Immature hopanoid biomarkers reflect the intense microbial activity for bacteria–derived organic matter and the gradual increase of maturity with burial depth. Abundant n-fatty acid methyl esters(n-FAMEs) that are in distributions coincident with fatty acids were detected in all samples. We proposed that the observed FAMEs originated from the methyl esterification of fatty acids; methanol production by methanotrophs and methanogenic archaea related to the anaerobic oxidation of methane, and sulfate reduction provided an O–methyl donor for methylation of fatty acids. The CH4 released from hydrate dissociation at oxygen isotope stage II of Cores ZD3 and ZS5, which had been confirmed by the occurrence of negative δ13C excursion and spherical pyrite aggregates, could have accelerated the above process and thus maximized the relative content of FAMEs at ZD3-2(400–420 cm depth) and ZS5-2(241–291 cm depth).
OU WenjiaLEI HuaiyanLU WanjunZHANG JieSHI ChunxiaoGONG ChujunHAN Chao
Marine gas hydrates, one of the largest methane reservoirs on Earth, may greatly affect the deep sea sedimentary environment and biogeochemistry; however, the carbon geochemistry in gas hydrate-bearing sediments is poorly understood. In this study, we investigated the carbon variables in sediment core 973-3 from the southwestern Taiwan Basin in the South China Sea to understand the effect of environmental factors and archaeal communities on carbon geochemistry. The carbon profiles suggest the methanogenesis with the incerase of dissolved inorganic carbon (DIC) and high total organic carbon (TOC) (mean = 0.46%) originated from terrigenous organic matter (mean j13CToc value of -23.6%0) driven by the abundant methanogen 'Methanosaeta and Methanomicrobiales'. The active anaerobic oxidation of methane is characterized by the increase of DIC and inorganic carbon (IC), and the depleted δ13CIC, coupled with the increase of TOC and the decrease of δ13Croc values owing to the methanotroph 'Methanosarcinales/ANME' in 430-840 cm. Environmental factors and archaeal communities in core 973-3 are significantly correlated to carbon variables owing to methane production and oxidation. Our results indicate that the carbon geochemical characteristics are obviously responding to the formation and decomposition of gas hydrates. Furthermore, pH, Eh and grain size, and Methanosaeta greatly affect the carbon geochemistry in gas hydrate-associated sediments.
LEI HuaiyanYANG YufengSelvaraj KANDASAMYSHI Chunxiao