A series of bismuth borate silica glasses were prepared and their densities, linear refractive indices and transmission spectra were measured. The optical gaps Eopt were obtained from the extrapolation of the linear portions to zero absorption. A decrease in the value of Eopt with increasing bismuth content may be explained by suggesting that the non-bridging oxygen ion content increases .It was found that high refractive index and narrow bandgap could lead into high third-order optical nonlinearity.
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.