The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates.
The extensional model of the South China Sea(SCS)has been widely studied,but remains under debate.Based on the latest high-quality multi-channel seismic data,bathymetric data,and other obtained seismic profiles,the asymmetric characteristics between the conjugate margins of the SCS are revealed and extensional model of the SCS margin is discussed further.Spatial variation of morphology,basement structure,and marginal faults are discovered among the SCS margin profiles.As for the NS-trending variation,the basement of northern margin displays in the shape of step downwards to the sea,while the basement of southern margin is composed of wide rotated and tilted blocks,without any obvious bathymetric change.The variation also exists in the development of marginal faults between the conjugate margins,and detachment fault system is identified on the southern margin.Along the southern margin from east to west,the Eastern and Southwestern Basins developed different structural units.Based on the tectonic contrast of the conjugate margins,differential extensional model is proposed to explain the spatial variation of the SCS structure,which introduces detachment faults controlling the evolution of the SCS.The upper crust above the detachment fault was deformed by simple shear,while the lower crust and upper mantle below the detachment fault was deformed by pure shear.Because of the different lateral transfer between the upper brittle faulting and the lower ductile extensional regions,there developed marginal plateau(Liyue basin)and outer rise(Zhenghe massif)on the lower plate margin of the Eastern Basin and the Southwestern Basin,respectively.The evolution of the present SCS may be influenced by the diachronous close of the paleo-SCS.