Neutron energy spectrometry diagnosis plays an important role in magnetic con- finement fusion. A new neutron time-of-flight (TOF) spectrometer with double scintillators is designed and optimized for the EAST toknmak. A set of optimM parameters is obtained by Monte Carlo simulation, based on the GEANT4 and ROOT codes. The electronic setup of the measurement system is designed. The count rate capability is increased by introducing a flash ADC. The designed spectrometer with high resolution and efficiency is capable of being applied to fusion neutron diagnostics. Applications in mixed-energy and continuous energy neutron fields can also be considered.
Properties of prompt fission neutrons from 238U(n, f) are calculated for incident neutron egies below 6 MeV using the multi-modal model, including the prompt fission neutron spectrum, thnere average prompt fission neutron multiplicity, and the prompt fission neutron multiplicity as a function of the fission fragment mass v(A) (usually named "sawtooth" data) The three most dominant fission modes are taken into account. The model parameters are determined on the basis of experimental fission fragment data. The predicted results are in good agreement with the experimental data.
Based on the multi-coincidence measurement, the time resolution of three liquid scintillation detectors (BC501A) were determined strictly by solving the coincidence equations, where the influence from electronics estimated by self coincidence measurement as well as the background had been considered. The result of this work agreed well with the result that was deduced from the traditional method, and it will be helpful to analyze the energy resolution of neutron time of flight spectra measured by using such detectors at CIAE (China Institute of Atomic Energy).
An accurate energy calibration of a 5"× 2" BC501A liquid scintillator-based neutron detector by means of photon sources and the unfolding of pulse height spectra are described. The photon responses were measured with 22Na, 137Cs and 54Mn photon sources and simulated using the GRESP code, which was developed at the Physiknlisch Technische Bundesanstalt in Germany. Pulse height spectra produced by three different photon sources were employed to investigate the effects of the unfolding techniques. It was found that the four unfolding codes of the HEPRO and UMG3.3 packages, including GRAVEL, UNFANA, MIEKE and MAXED, performed well with the test spectra and produced generally consistent results. They could therefore be used to obtain neutron energy spectra in toknmak experiments.
An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.