This paper is involved with the adaptive control and synchronization problems for an uncertain new hyperchaotic Lorenz system. Based on the Lyapunov stability theory, the adaptive control law is derived such that the trajectory of hyperchaotic Lorenz system with unknown parameters can be globally stabilized to an unstable equilibrium point of the uncontrolled system. Furthermore, an adaptive control approach is presented to the synchronizations between two identical hyperchaotic systems, particularly between two different uncertain hyperchaotic systems. Numerical simulations show the effectiveness of the presented method.
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system, studies some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov exponents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k. Furthermore, effective linear feedback control method is used to suppress hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbits. Numerical simulations are presented to show these results.
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov expo- nents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.
This paper introduces an adaptive procedure for the problem of synchronization and parameter identification for chaotic networks with time-varying delay by combining adaptive control and linear feedback. In particular, we consider that the equations xi(t) (for i = r+ 1, r+2,... ,n) can be expressed by the former xi(t) (for i=1,2,...,r), which is not the same as the previous equation. This approach is also able to track changes in the operating parameters of chaotic networks rapidly and the speed of synchronization and parameter estimation can be adjusted. In addition, this method is quite robust against the effect of slight noise and the estimated value of a parameter fluctuates around the correct value.
In this study, a successful linear matrix inequality approach is used to analyse a non-parameter perturbation of multi-delay Hopfield neural network by constructing an appropriate Lyapunov-Krasovskii functional. This paper presents the comprehensive discussion of the approach and also extensive applications.