In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C composites, and then MoSi2 and SiC were subsequently prepared in a CVI /CVR process using methyltrichlorosilane (MTS) as precursor. The deposition and reaction mechanism of the MoSi2-SiC composite coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The oxidation behavior of SiC-MoSi2 coated specimens was tested. The results show that the porous Mo layer can be densified with SiC phase decomposed from MTS, and transformed into SiC-MoSi2 by reacting with MTS as well. A dense composite coating was prepared with optimized deposition parameters. The coated specimen exhibits a good oxidation resistance with a little mass loss of 1.25% after oxidation at 1500 °C for 80 h.
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
To improve the oxidation resistance of boron-modified carbon foams, the B2O3 coating was prepared on boron-modified carbon foams by low-cost slurry method. The microstructures and phase compositions of the coated carbon foams were characterized by scanning electron microscopy and X-ray diffraction, respectively. Oxidation resistances of uncoated and coated boron-modified carbon foams were investigated at 873 K in air. The results showed that as-received B2O3 coating could protect boron-modified carbon foams from oxidation at 873 K. B2O3-coated carbon foam doped with 7% B2O3 (mass fraction) (BO-7) had better oxidation resistance, exhibiting mass loss of 17.40% after oxidation at 873 K for 120 min. The melting glass layer formed on the surface of BO-7 could prevent oxygen from diffusing into boron-modified carbon foams substrate during oxidation to some extent.
C/C–SiC–HfC composites were fabricated via precursor infiltration and pyrolysis using a mixture solution of organic hafnium-containing polymer and polycarbosilane as precursor. The microstructures and the phases of the composites were analyzed by scanning electron microscopy and X-ray diffraction. The ablation resistance of the composites was evaluated under 3,000 °C oxyacetylene torch. After ablation for 120 s, the composites exhibit good ablation properties with the linear and mass ablation rates of 9.1 9 10-4mm/s and 1.30 9 10-3g/s, which are far lower than those of the C/C–SiC composites. The excellent ablative property of the C/C–SiC–HfC composites is resulted from the formation of HfO2 molten layer on the surface of the composites, which could play a positive role in reducing heat transfer and preventing oxygen transport to the underlying carbon substrate.
C/C-ZrC composites with continuous ZrC matrix were prepared by precursor infiltration and pyrolysis process using zirconium-containing polymer.Ablation properties of the composites were investigated by oxyacetylene flame with heat flux of 2380 and 4180 kW/m2,respectively.The results showed that C/C-ZrC composites exhibited excellent ablation resistance under the heat flux of 2380 kW/m2for 120 s and a tree-coral-like ZrO2protective layer formed after ablation.However,when the heat flux increased to 4180 kW/m2,the maximum temperature of ablated surface reached 2500 ℃ and a strong degradation of ablation resistance was observed due to the weak bonding between the formed ZrO2layer and the composites.The flexural strength of C/C-ZrC composites was 110.7 ± 7.5 MPa.There were a large number of carbon fiber bundles pull-out,and the composites exhibited a pseudo-plastic fracture behavior.
To improve oxidation resistance of carbon/carbon (C/C) composites, a SiC/SiC-MoSi2-ZrB2 double-layer ceramic coating was prepared on C/C composites by two-step pack cementation. The phase compositions and microstructures of as-prepared multilayer coating were characterized by X-ray diffraction and scanning electron microscopy. The oxidation resistance at 1773 K and the effect of thermal shock between 1773 K and room temperature on mechanical performance of coated specimens were investigated. The results show that the SiC/SiC-MoSi2-ZrB2 coating exhibits dense structure and is composed of SiC, Si, MoSi2 and ZrB2. It can protect C/C composites from oxidation at 1773 K for more than 510 h with weight loss of 0.5%. The excellent anti-oxidation performance of the coating is due to the formation of SiO2-ZrSiO4 complex glassy film. The coating can also endure the thermal shocks between 1773 K and room temperature for 20 times with residual flexural strength of 86.1%.