Following Blackburn, Deaconescu and Mann, a group G is called an equilibrated group if for any subgroups H,K of G with HK = KH, either H≤NG(K) or K≤NG(H). Continuing their work and based on the classification of metacyclic p-groups given by Newman and Xu, we give a complete classification of 2-generator equilibrated p-groups in this note.
Let G be a finite nonabelian group which has no abelian maximal subgroups and satisfies that any two non-commutative elements generate a maximal subgroup. Then G is isomorphic to the smallest Suzuki 2-group of order 64.
In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order p^n with a cyclic subgroup of index p2 are the same.