您的位置: 专家智库 > >

中国博士后科学基金(20100481307)

作品数:4 被引量:5H指数:2
相关作者:王建中白艳萍杜晓刚胡红萍更多>>
相关机构:中北大学更多>>
发文基金:中国博士后科学基金山西省自然科学基金国家自然科学基金更多>>
相关领域:自动化与计算机技术经济管理更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇自动化与计算...
  • 1篇经济管理

主题

  • 1篇质心
  • 1篇数据点
  • 1篇校正方法
  • 1篇边缘检测
  • 1篇MULTI
  • 1篇NETWOR...
  • 1篇OPTIMI...
  • 1篇PASSEN...
  • 1篇ROUTE
  • 1篇SOBEL边...
  • 1篇SVD分解
  • 1篇TRANSF...
  • 1篇ALGORI...
  • 1篇BP
  • 1篇DISTAN...
  • 1篇FEATUR...
  • 1篇FORECA...
  • 1篇GA
  • 1篇GENETI...
  • 1篇GRNN

机构

  • 1篇中北大学

作者

  • 1篇胡红萍
  • 1篇杜晓刚
  • 1篇白艳萍
  • 1篇王建中

传媒

  • 3篇Journa...
  • 1篇数学的实践与...

年份

  • 3篇2012
  • 1篇2011
4 条 记 录,以下是 1-4
排序方式:
Application of multi-GRNN with a gating network in stock prices forecast
2012年
This paper proposes the generalized regression neural network(GRNN)model and multi-GRNN model with a gating network by selecting the data of Shanghai index,the stocks of Shanghai Pudong Development Bank(SPDB),Dongfeng Automobile and Baotou Steel.We analyze the two models using Matlab software to predict the opening price respectively.Through building a softmax excitation function,the multi-GRNN model with a gating network can obtain the best weights.Using the data of the four groups,the average of forecasting errors of 4 groups by GRNN neural model is 0.012 208,while the average of the multi-GRNN models's with a gating network is 0.002 659.Compared with the real data,it is found that the both results predicted by the two models have small mean square prediction errors.So the two models are suitable to be adopted to process a large quantity of data,furthermore the multi-GRNN model with a gating network is better than the GRNN model.
卢金娜胡红萍白艳萍
一种快速有效的混合倾斜车牌校正方法被引量:3
2012年
车牌倾斜校正是车牌识别系统中的一关键技术,校正效果将直接影响到后续字符分割和识别的效果.为此,提出了一种快速有效的混合倾斜车牌校正方法.水平倾斜校正时,先进行Sobel垂直边缘检测算子提取字符的有效数据点,构造有效数据点矩阵,然后进行矩阵奇异值分解,利用特征向量矩阵导出车牌水平倾斜角度的表达式;垂直倾斜校正时,首先通过Sobel垂直和水平边缘检测有效去除边框及上下左右噪声干扰区域,然后通过形态学腐蚀提取有效反映字符水平错位的有效数据点,其次将这些有效数据点水平投影分成七个字符区域,求取每个区域错切变换后的最佳列坐标质心对应其区域垂直倾斜角,最后取区域垂直倾斜角的均值作为车牌的最佳垂直倾斜角.对大量复杂背景下的倾斜车牌进行实验,并做了精确度、运行时间、抗干扰性分析,实验结果表明:提出的混合倾斜校正方法精确度高、运行时间短、抗干扰性强.
杜晓刚王建中白艳萍胡红萍
关键词:SOBEL边缘检测
Optimization Route Algorithm Based on the Minimal Transfer Time and Distance
2011年
The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.
胡红萍赵敏白艳萍
关键词:TRANSFERDISTANCE
BP neural network classification on passenger vehicle type based on GA of feature selection被引量:2
2012年
This paper has concluded six features that belong to passenger vehicle types based on genetic algorithm(GA)of feature selection.We have obtained an optimal feature subset,including length,ratio of width and length,and ratio of height and length.And then we apply this optimal feature subset as well as another feature set,containing length,width and height,to the network input.Back-propagation(BP)neural network and support vector machine(SVM)are applied to classify the passenger vehicle type.There are four passenger vehicle types.This paper selects 400 samples of passenger vehicles,among which 320 samples are used as training set(each class has 80 samples)and the other 80 samples as testing set,taking the feature of the samples as network input and taking four passenger vehicle types as output.For the test,we have applied BP neural network to choose the optimal feature subset as network input,and the results show that the total classification accuracy rate can reach 96%,and the classification accuracy rate of first type can reach 100%.In this condition,we obtain a conclusion that this algorithm is better than the traditional ones[9].
秦慧超胡红萍白艳萍
共1页<1>
聚类工具0