Measurement error of unbalance's vibration response plays a crucial role in calibration and on-line updating of influence coefficient(IC). Focusing on the two problems that the moment estimator of data used in calibration process cannot fulfill the accuracy requirement under small sample and the disturbance of measurement error cannot be effectively suppressed in updating process, an IC calibration and on-line updating method based on hierarchical Bayesian method for automatic dynamic balancing machine was proposed. During calibration process, for the repeatedly-measured data obtained from experiments with different trial weights, according to the fact that measurement error of each sensor had the same statistical characteristics, the joint posterior distribution model for the true values of the vibration response under all trial weights and measurement error was established. During the updating process, information obtained from calibration was regarded as prior information, which was utilized to update the posterior distribution of IC combined with the real-time reference information to implement online updating. Moreover, Gibbs sampling method of Markov Chain Monte Carlo(MCMC) was adopted to obtain the maximum posterior estimation of parameters to be estimated. On the independent developed dynamic balancing testbed, prediction was carried out for multiple groups of data through the proposed method and the traditional method respectively, the result indicated that estimator of influence coefficient obtained through the proposed method had higher accuracy; the proposed updating method more effectively guaranteed the measurement accuracy during the whole producing process, and meantime more reasonably compromised between the sensitivity of IC change and suppression of randomness of vibration response.