堆肥可以杀灭病原菌、抑制杂草、缓慢释放养分、改良土壤、保持水分,是农业可持续发展的重要措施。堆肥过程中释放出大量温室气体尤其是甲烷,对全球环境变化产生重要影响。本研究通过量化比较不同堆肥方式下温室气体排放规律和排放量,以期实现减少堆肥堆制过程中温室气体排放的堆放方式。采用静态箱法研究了强制通风加过磷酸钙、强制通风不加过磷酸钙、翻堆通风加过磷酸钙、翻堆通风不加过磷酸钙四种处理的温室气体排放量。76天堆肥结束时,翻堆处理总有机碳降解51%-55%,强制通风降解大约44%。翻堆加过磷酸钙和不加过磷酸钙处理的甲烷排放量分别为15.35和15.27 g Mg-1堆料,高于强制通风处理排放量(加过磷酸钙和不加过磷酸钙处理分别为7.76 g Mg-1堆料和3.22 g Mg-1堆料)。在N2O排放量上,强制通风处理小于0.1%初始含氮量,翻堆处理约为0.1%初始氮。通风和翻堆过程中能量消耗分别相当于3.27、3.4、12.29和11.89 kg CO2-C Mg-1 堆料。过磷酸钙对温室气体排放影响很小,可能是大量秸秆作为堆肥填充料的加入保持了肥堆的高孔隙度和良好的通风条件。因此虽然强制通风堆肥可以节省空间且操作方便 ,在大规模集约化处理畜禽粪便时广泛应用,但翻堆通风由于其低建设成本和低温室气体排放量,以及较高的有机质分解效率,更适宜在我国农村采用。
利用FACE(Free Air Carbon-Dioxide Enrichment)平台技术,研究了低氮(125kg/hm2,以纯N计)和常氮(250kg/hm2)水平下,高浓度CO2(周围大气CO2浓度+200μmol/mol)对水稻不同生育期功能叶N代谢关键酶活性的影响。结果表明,高浓度CO2提高了叶片硝酸还原酶和蛋白水解酶的活性,两者在常N下的响应程度大于在低N下的响应程度;高浓度CO2降低了低N下叶片谷氨酰胺合成酶和谷氨酸脱氢酶(NADH-GDH)活性,常N水平下酶活性的下降趋势得到改变或缓解。由此可见,高浓度CO2条件下NO3-转化为NH4+加速,而NH4+进一步同化为有机N却受阻,而且,由于后期蛋白水解加速,将进一步加剧叶片N含量的下降。这是水稻叶片N含量下降的内在因素。而增施N肥,有利于同化酶的表达,降低叶片蛋白水解酶活力,从而缓解叶片N含量的下降。
利用FACE(free air carbon dioxide enrichment)技术平台,在两种氮肥施用(低氮,LN和常规氮,NN)水平下,研究CO2浓度升高对水稻和小麦收获后根际和非根际土壤可溶性碳、有机磷、速效磷和速效钾的影响。结果表明,相对于对照CO2浓度处理,高CO2浓度处理在显著增加作物生物量的前提下,土壤速效磷和速效钾不但没有降低反而增加,增加幅度小麦季大于水稻季,根际大于非根际;水稻季土壤可溶性碳含量增加,且NN水平下水稻和小麦季进入土壤的可溶性碳增加,导致土壤有机磷降低幅度低于LN水平,且水稻季根际土壤大于非根际土壤,有机磷的降低是保证有效磷升高的一个重要因素,增加氮肥施用将有利于土壤有机磷的增加,对维持土壤磷的供给有积极作用,有利于作物对高CO浓度的持续响应。
The estimation of the global warming mitigation potential in terrestrial ecosystems is of great importance for decision makers to adopt measures to increase soil organic carbon (SOC) as well as to reduce greenhouse gas (GHGs) emissions. In this paper, we compiled data published in peer-reviewed journals, and conducted a holistic analysis of the effects of organic matter amendment on soil organic carbon sequestration, methane (CH4) and nitrous oxide (N2O) emissions in paddy and upland systems. Results showed that organic matter amendment increased soil organic carbon content, and apparent conversion rate of organic matter carbon to soil organic carbon in paddies was constant, while that in uplands decreased along with amendment years at 25 years time scale. Organic matter amendment during the rice season led to large CH4-C emissions, e.g on average 99.5 g CH4-C per kg organic carbon input under intermittent flood conditions, and 191.7 g CH4-C per kg organic carbon input under continuous flood conditions, respectively. By alteration of organic matter amendment from rice season to off-rice upland crop season, estimated CH4-C emissions in China could be cut by 3.5 Tg yr-1, accounting for 63% of current CH4-C emissions (5.5 Tg). If organic matter amendment percentage was increased from current 30% to future 50% of organic matter production and by alteration of organic matter amendment from rice season to off-rice upland crop season, the equivalent CO2-C mitigation potential in farmland of China would be 49.2 Tg yr-1 at the 10th year organic matter amendment and 36.0 Tg yr-1 at the 30th year amendment. These findings are important not only for China but also for the other rice production countries to increase farmland global warming mitigation.