The liquidus univariant lines of the Fe-Nb-B ternary system have been thermodynamically calculated by means of CALPHAD method and Fe-based thermodynamic data. It is found that there are two eutectic reactions in the Fe-rich corner,that is,(1) L(Fe-3Nb-15B) →α+γ+ M2B (1430 K),and (2) L(Fe-10Nb-27B) → FeB + Lc14 + M2B (1575 K). Moreover,the eutectic points are very close to the compositions with high glass forming ability determined experimentally. This means that it is feasible to design the compositions of multicomponent bulk metallic glasses by looking for the eutectic points in the Fe-Nb-B system by means of thermodynamic calculation.
Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite.
Bridgman directional solidification and laser remelting experiments were carried out on Nd11.76Fe82.36B5.88 and Nd13.5Fe79.75B6.75 alloys.Microstructure evolutions along with solidification parameters(temperature gradient G,growth velocity V and initial alloy composition C0)were investigated.A solidification microstructure selection map was established,based on the consideration of solidification characteristics of peritectic T1 phase.In Bridgman directional solidification experiments,with the increasing growth velocities,the morphology of T1 phase changed from plane front or faceted plane front to dendrites.In laser remelting experiments,a transition from primary γ-Fe dendrites to T1 dendrites was found.Theoretical predictions are in good agreement with experimental results.
An energy model for the melt of bulk metallic glass (BMG) with clusters was estab- lished, the Gibbs free energy and interfacial energy for the Zr-Al-Ni ternary alloy melt with Zr2Ni clusters were calculated, and the effects of the clusters on the Gibbs free energy, interfacial energy and nucleation rate were analyzed. The results showed that the existence of the clusters in the Zr-Al-Ni ternary alloy melt enables the Gibbs free energy to decrease in the composition range where bulk metallic glass forms easily, makes the interfacial energy increase and changes the distribu- tion of the interfacial energy with the alloy composition. Because of the clusters in the melt, the Gibbs free energy of the Zr66Al8Ni26 alloy melt decreases about 0.3-1 kJ/mol and the interfacial energy between the melt and crystal nucleus increases about 0.016 J/m2. The nucleation rate of the undercooled Zr66Al8Ni26 alloy melt de- creases evidently under the influence of the clusters on Gibbs free energy and the interfacial energy, and the maximum of the nucleation rate in the melt with the Zr2Ni clusters is only about 107 mol1s1.