In this paper, we study the weak type heterodimensional cycle with orbit-flip in its non-transversal orbit by using the local moving frame approach. For the first two subcases, we present the sufficient conditions for the existence, uniqueness and non-coexistence of the homoclinic orbit, heteroclinic orbit and periodic orbit. Based on the bifurcation analysis, the bifurcation surfaces and the existence regions are located. And for the third subcase, we theoretically established both the coexistence condition for the homoclinic loop and the periodic orbit and the coexistence condition for the persistent heterodimensional cycle and multiple periodic orbits due to the weak type of the transversal heteroclinic orbit. Moreover, an analytical example is presented for this subcase.
In this paper, some theorems of uniform stability and uniform asymptotic stability for impulsive functional differential equations with infinite delay are proved by using Lyapunov functionals and Razumikhin techniques. An example is also proved at the end to illustrate the application of the obtained results.
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.
The authors study the bifurcation of homoclinic orbits from a degenerate homoclinic orbit in reversible system. The unperturbed system is assumed to have saddle-center type equilibrium whose stable and unstable manifolds intersect in two-dimensional manifolds. A perturbation technique for the detection of symmetric and nonsymmetric homoctinic orbits near the primary homoclinic orbits is developed. Some known results are extended.