This paper presents an empirical likelihood estimation procedure for parameters of the discretely sampled process of Ornstein-Uhlenbeck type. The proposed procedure is based on the condi- tional characteristic function, and the maximum empirical likelihood estimator is proved to be consistent and asymptotically normal. Moreover, this estimator is shown to be asymptotically efficient under some mild conditions. When the background driving Lévy process is of type A or B, we show that the intensity parameter can be exactly recovered, and we study the maximum empirical likelihood estimator with the plug-in estimated intensity parameter. Testing procedures based on the empirical likelihood ratio statistic are developed for parameters and for estimating equations, respectively. Finally, Monte Carlo simulations are conducted to demonstrate the performance of proposed estimators.
In this paper we consider the Feller property and the exponential ergodicity for general diffusion processes with state-dependent switching. We prove their Feller continuity by means of intro- ducing some auxiliary processes and by making use of the Radon-Nikodym derivatives. Furthermore, we also prove their strong Feller continuity and their exponential ergodicity under some reasonable conditions.
XI FuBao Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China