The authors study the tractability and strong tractability of a multivariate integration problem in the worst case setting for weighted 1-periodic continuous functions spaces of d coordinates with absolutely convergent Fourier series. The authors reduce the initial error by a factor ε for functions from the unit ball of the weighted periodic continuous functions spaces. Tractability is the minimal number of function samples required to solve the problem in polynomial in ε^-1 and d, and the strong tractability is the presence of only a polynomial dependence in ε^-1. This problem has been recently studied for quasi-Monte Carlo quadrature rules, quadrature rules with non-negative coefficients, and rules for which all quadrature weights are arbitrary for weighted Korobov spaces of smooth periodic functions of d variables. The authors show that the tractability and strong tractability of a multivariate integration problem in worst case setting hold for the weighted periodic continuous functions spaces with absolutely convergent Fourier series under the same assumptions as in Ref,[14] on the weights of the Korobov space for quasi-Monte Carlo rules and rules for which all quadrature weights are non-negative. The arguments are not constructive.
In this paper, using an equivalent characterization of the Besov space by its wavelet coefficients and the discretization technique due to Maiorov, we determine the asymptotic degree of the Bernstein n-widths of the compact embeddings Bq0s+t(Lp0(Ω))→Bq1s(Lp1(Ω)), t〉max{d(1/p0-1/p1), 0}, 1 ≤ p0, p1, q0, q1 ≤∞,where Bq0s+t(Lp0(Ω)) is a Besov space defined on the bounded Lipschitz domain Ω ? Rd. The results we obtained here are just dual to the known results of Kolmogorov widths on the related classes of functions.
Temlyakov considered the optimal recovery on the classes of functions with bounded mixed derivative in the Lp metrics and gave the upper estimates of the optimal recovery errors. In this paper, we determine the asymptotic orders of the optimal recovery in Sobolev spaces by standard information, i.e., function values, and give the nearly optimal algorithms which attain the asymptotic orders of the optimal recovery.
Let β 〉 0 and Sβ := {z ∈ C : |Imz| 〈β} be a strip in the complex plane. For an integer r ≥ 0, let H∞^Г,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f^(r)(z)| ≤ 1, z ∈ Sβ. For σ 〉 0, denote by Bσ the class of functions f which have spectra in (-2πσ, 2πσ). And let Bσ^⊥ be the class of functions f which have no spectrum in (-2πσ, 2πσ). We prove an inequality of Bohr type‖f‖∞≤π/√λ∧σ^r∑k=0^∞(-1)^k(r+1)/(2k+1)^rsinh((2k+1)2σβ),f∈H∞^r,β∩B1/σ,where λ∈(0,1),∧and ∧′are the complete elliptic integrals of the first kind for the moduli λ and λ′=√1- λ^2,respectively,and λ satisfies4∧β/π∧′=1/σ.The constant in the above inequality is exact.