Pressurized bentonite slurry is applied on a tunnel face to form a filter cake to stabilize the tunnel face when the slurryshield excavates through the sandy soil. Failure of the tunnel face may be caused by a high permeable filter cake, which commonlyhas a long penetration distance of slurry in sands. A column system with a height of 680 mm and a diameter of 300 mm was de-veloped to model pressurized slurry infiltration in sands. Pressure transducers were installed to estimate the hydraulic conductivityof the filter cake during slurry infiltration. The electrical conductivity of the leachate of collected samples was measured. Resultsshow that the majority of fine particles in slurry are within the range 100-300 mm into the sand specimen. The time for forming animpermeable filter cake is about 300 s, which indicates the impermeable filter cake is hard to form during the excavation.
To investigate the seismic passive earth thrust with two-dimensional steady seepage, a general pseudo-dynamic solution was established based on the limit equilibrium analysis. This solution was purposefully applied to a waterfront gravity wall, which retains a submerged backfill with a drainage system along the backfill-structure interface. The wall was assumed to move towards the backfill to the passive failure state. And the theoretical derivation considered the pore pressures induced by the seepage, the excess pore pressures generated by the earthquake and the seismic inertial forces. Thereinto, the hydrostatic and hydrodynamic pressures were calculated by the analytical formulas, while the seismic forces were obtained by the pseudo-dynamic method. In the parametric study, the results indicate that the velocity of shear wave has a more prominent impact on the seismic passive earth thrust than that of primary wave. Both the horizontal and vertical seismic actions decrease the passive earth pressure, but the horizontal one affects the amplitude of the earth pressure coefficient more significantly. Moreover, the soil friction and the wall friction distinctly increase the seismic passive earth pressure just like the static situation. The comparison shows that the results are consistent with the previous work, which verifies its validity.