This paper investigates the decoherence of photo-subtracted squeezed vacuum state (PSSVS) in dissipative channel by describing its statistical properties with time evolution such as Wigner function, Husimi function, and tomogram. It first calculates the normalization factor of PSSVS related to Legendre polynomial. After deriving the normally ordered density Operator of PSSVS in dissipative channel, one obtains the explicit analytical expressions of time evolution of PSSVS's statistical distribution function. It finds that these statistical distributions loss their non-Gaussian nature and become Gaussian at last in the dissipative environment as expected.
In a preceding letter (2007 Opt. Lett. 32 554) we propose complex continuous wavelet transforms and found Laguerre-Gaussian mother wavelets family. In this work we present the inversion formula and Parseval theorem for complex continuous wavelet transform by virtue of the entangled state representation, which makes the complex continuous wavelet transform theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.
We discuss quantum fluctuation in excited states (named thermo number states) of mesoscopic LC circuits at a finite temperature. By introducing the coherent thermo state into the thermo field dynamics pioneered by Umezawa and using the natural representation of thermo squeezing operator we can concisely derive the fluctuation. The result shows that the noise becomes larger when either temperature or the excitation number increases.
By virtue of the technique of integration within an ordered product (IWOP) of operators and the bipartite entangled state representation, we derive some new identities about operator Hermite polynomials in both the single-and two-variable cases. We also find a binomial-like theorem between the single-variable Hermite polynomials and the two-variable Hermite polynomials. Application of these identities in deriving new integration formulas, but without really doing the integration in the usual sense, is demonstrated.