An experimental double-layer active frequency-selective surface(AFSS) for stealth radome is proposed. The AFSS is a planar structure which is composed of a fixed frequency-selective surface(FSS), a PIN diodes array, and a DC bias network. The AFSS elements incorporating switchable PIN diodes are discussed. By means of controlling the DC bias network, it is possible to switch the frequency response for reflecting and transmitting. Measured and simulated data validate that when the incidence angle varies from 0°to 30° the AFSS produces more than-11.5 dB isolation across6–18 GHz when forward biased. The insertion loss(IL) is less than 0.5 dB across 10–11 GHz when reverse biased.
A simple Fourier transform spectrometer was designed and constructed for the measurement of detectors,sources,passive devices and materials in the terahertz(THz) range.It can be operated at frequencies between 0.3 and 1.5 THz,using a 50-μm-thick Mylar-film beam splitter.The spectral range can be changed by altering the thickness of the beam splitter.The highest frequency resolution is 750 MHz.We studied the properties of heterodyne detectors including superconductor mixers and semiconductor harmonic mixers,direct detectors including an InSb semiconductor bolometer,superconducting tunnel junctions and the Golay cell,and sources including Gunn oscillators and a microwave source with its multipliers,as well as various materials and passive devices including Si wafers and metal mesh filters.