In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).
With the rapid development of information technology,digital images have become an important medium for information transmission.However,manipulating images is becoming a common task with the powerful image editing tools and software,and people can tamper the images content without leaving any visible traces of splicing in order to gain personal goal.Images are easily spliced and distributed,and the situation will be a great threat to social security.The survey covers splicing image and its localization.The present status of splicing image localization approaches is discussed along with a recommendation for future research.
In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be processed in a holistic manner in the proposed scheme,which makes full use of the correlation between RGB channels.And due to the use of convolutional neural network,it can effectively avoid the one-sidedness of artificial features.Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection.