Hole mobility changes under uniaxial and combinational stress in different directions are characterized and analyzed by applying additive mechanical uniaxial stress to bulk Si and SiGe-virtual-substrate-induced strained- Si(s-Si)p-MOSFETs(metal-oxide-semiconductor field-effect transistors)along 110 and 100 channel directions. In bulk Si,a mobility enhancement peak is found under uniaxial compressive strain in the low vertical field.The combination of 100 direction uniaxial tensile strain and substrate-induced biaxial tensile strain provides a higher mobility relative to the 110 direction,opposite to the situation in bulk Si.But the combinational strain experiences a gain loss at high field,which means that uniaxial compressive strain may still be a better choice.The mobility enhancement of SiGe-induced strained p-MOSFETs along the 110 direction under additive uniaxial tension is explained by the competition between biaxial and shear stress.
A PNPN tunnel field effect transistor(TFET) with a high-k gate dielectric and a low-k fringe dielectric is introduced.The effects of the gate and fringe electric fields on the TFET's performance were investigated through two-dimensional simulations.The results showed that a high gate dielectric constant is preferable for enhancing the gate control over the channel,while a low fringe dielectric constant is useful to increase the band-to-band tunneling probability.The TFET device with the proposed structure has good switching characteristics,enhanced on-state current,and high process tolerance.It is suitable for low-power applications and could become a potential substitute in next-generation complementary metal-oxide-semiconductor technology.
This paper describes a method using both reduced pressure chemical vapor deposition (RPCVD) and ultrahigh vacuum chemical vapor deposition (UHVCVD) to grow a thin compressively strained Ge film. As the first step, low temperature RPCVD was used to grow a fully relaxed SiGe virtual substrate layer at 500 ℃ with a thickness of 135 nm, surface roughness of 0.3 nm, and Ge content of 77%. Then, low temperature UHVCVD was used to grow a high quality strained pure Ge film on the SiGe virtual substrate at 300 ℃ with a thickness of 9 nm, surface roughness of 0.4 nm, and threading dislocation density of - 10^5 cm^-2. Finally, a very thin strained Si layer of 1.5-2 nm thickness was grown on the Ge layer at 550 ℃ for the purpose of passivation and protection. The whole epitaxial layer thickness is less than 150 nm. Due to the low growth temperature, the two-dimensional layer-by-layer growth mode dominates during the epitaxial process, which is a key factor for the growth of high quality strained Ge films.