The controllable transition between Turing and antispiral patterns is studied by using a time-delayed-feedback strategy in a FitzHugh-Nagumo model. We treat the time delay as a perturbation and analyse the effect of the time delay on the Turing and Hopf instabilities near the Turing Hopf codimension-two phase space. Numerical simulations show that the transition between the Turing patterns (hexagon, stripe, and honeycomb), the dual-mode antispiral, and the antispiral by applying appropriate feedback parameters. The dual-mode antispiral pattern originates from the competition between the Turing and Hopf instabilities. Our results have shown the flexibility of the time delay on controlling the pattern formations near the Turing-Hopf codimension-two phase space.
Hypocycloid and epicycloid motions of irregular grains (pine pollen) are observed for the first time in a dust plasma in a two-dimensional (2D) horizontal plane. These cycloid motions can be regarded as a combination of a primary circle and a secondary circle. An inverse Magnus force originating from the spin of the irregular grain gives rise to the primary circle. Radial confinement resulting from the electrostatic force and the ion drag force, together with inverse Magnus force, plays an important role in the formation of the secondary circle. In addition, the cyclotron radius is seen to change periodically during the cycloid motion. Force analysis and comparison experiments have shown that the cycloid motions are distinctive features of an irregular grain immersed in a plasma.
Dust molecules are observed in a dusty plasma experiment.By using measurements with high spatial resolution,the formation and dissociation of the dust molecules are studied.The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby.When the interparticle distance between the upper dust grain and the lower one is less than a critical value,the two dust grains would form a dust molecule.The upper dust grain always leads the lower one as they travel.When the interparticle distance between them is larger than the critical value,the dust molecule would dissociate.