Diurnal variations of the SuperMAG auroral electrojet indices(SML and SMU)were examined for the period of 1980–2010,and the differences between SML and SMU were especially analyzed.The diurnal variation of SML with a maximum at around 1100 UT has a prenoonpostnoon asymmetry.At solstices,the diurnal variation of SML is much stronger than that at equinoxes.For the SMU,two maxima are recorded in the diurnal variation with the bigger one at 1700 UT and the smaller one at 0400 UT.The seasonal variations are not obvious in the UT variation characteristics of SMU although the intensity of SMU is changed remarkably season by season.For both SML and SMU,the contributing stations are located at higher geomagnetic latitude around 1600 UT and at lower geomagnetic latitude around 0400 UT.These results indicate that:(1)the SML is mostly controlled by the convection electric field.Its diurnal variation is mainly correlated with the equinoctial and R-M hypothesis;(2)the SMU is largely controlled by the ionospheric conductance.Its diurnal variation is tightly correlated with the solar radiation.
In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes.
磁暴期间外辐射带相对论电子环境是当前空间物理学和空间天气学研究的一个热点.磁暴以后外辐射带相对论电子通量既可能增强,也可能减少,这给辐射带环境的预报带来了困难.该研究基于SAMPEX(Solar,Anomalous,and Magnetospheric Particle Explorer)和POES(Polar Orbiting Environmental Satellites)卫星的观测数据,选取了1992年7月至2004年6月期间的84个孤立磁暴,分别研究了0.3~2.5和2.5~14 Me V电子通量在磁暴期间的变化.结果表明,这两个能段的相对论电子在磁暴期间的变化经常有明显的差别.随着电子能量的增高(减小),磁暴恢复相期间观测到电子通量比暴前减少(增强)的可能性明显增大.对于0.3~2.5Me V的电子,在约为82%的孤立磁暴的恢复相期间电子通量增强,而仅有3%的磁暴使电子通量减少;对于2.5~14 Me V电子,仅在37%的孤立磁暴中观测到通量增加,而却有45%的磁暴使电子通量减少.不同能量的相对论电子在磁暴期间通量变化的这种不同特征,是由于其加速和损失过程的差别所导致的.本文的研究结果表明,对外辐射带相对论电子环境应该按不同能段进行建模和预报.0.3~2.5 Me V的电子是外辐射带高能电子的主体,揭示其暴时变化规律对认识和预报外辐射带环境极为重要.
This paper studies the effective polytropic index in the central plasma sheet (CPS) by using the method of Kartalev et al. (2006), which adopts the denoising technique of Haar wavelet to identify the homogeneous MHD Bernoulli integral (MBI) and has been frequently used to study the polytropic relation in the solar wind. We chose the quiet CPS crossing by Cluster C1 during the interval 08:51:00-09:19:00 UT on 03 August 2001. In the central plasma sheet, thermal pressure energy per unit mass is the most important part in MBI, and kinetic energy of fluid motion and electromagnetic energy per unit mass are less important. In the MBI, there are many peaks, which correspond to isothermal or near isothermal processes. The interval lengths of homogenous MBI regions are generally less than 1 min. The polytropic indexes are calculated by linearly fitting the data of lnp and Inn within a 16 s window, which is shifted forward by 8 s step length. Those polytropic indexes with IRI ≥0.8 (R is the correlation coefficient between lnp and inn) and p-value≤0.1 in the homogeneous regions are almost all in the range of [0, 1]. The mean and median effective polytropic indexes with high R and low p-value in homogeneous regions are 0.34 and 0.32 respectively, which are much different from the polytropic index obtained by traditional method (αtrad=-0.15). This result indicates that the CPS is not uniform even during quiet time and the blanket applications of polytropic law to plasma sheet may return misleading value of polytropic index. The polytropic indexes in homogeneous regions with a high correlation coefficient basically have good regression significance and are thus credible. These results are very important to understand the energy transport in magnetotail in the MHD frame.
Although much has been done on the hemispheric asymmetry (or seasonal variations) of auroral hemispheric power (HP), the dependence of HP hemispheric asymmetry on solar cycle has not yet been studied. We have analyzed data during 1979-2010 and investigated the dependence of HP hemispheric asymmetry/seasonal variation for the whole solar cycle. Here we show that (1) the hemispheric asymmetry of HP is positively correlated to the value of solar F10.7 with some time delay; (2) it is closely related to the coupling function between the solar wind and magnetosphere; and (3) the winter hemisphere receives more auroral power than the summer hemisphere for Kp ~0 to 6. The statistic results can be partly understood in the framework of the ionospheric conductivity feedback model. The similarity and differences between our results and previous results are discussed in the paper.
ZHENG LingFU SuiYanZONG QuiGangPARKS GeorgeWANG ChiCHEN Xi