The calibration of the elastic characteristics of deformed coals is essential for seismic inversion of such units, because the prediction of coal deformation is essential for both mining safety and methane production. Therefore, many samples of broken and mylonitic deformed coal were tested with ultrasonic waves in the laboratory. These samples came from four mining areas: the Huainan, Pingdingshan, Hebi and Jiaozuo coal mines, which present five different metamorphic ranks shown as cylinders striking across circular limits of steel. Under normal pressures and temperatures, ultrasonic P- and S-wave tests show that the velocities, quality factors, and elastic moduli of the deformed coals were greatly reduced compared with undeformed coals. Also, some correlation was found between the P- and S-wave velocities in the deformed coals. However, there is no evidence of linear correlations between velocity and density, velocity and quality factor, or the quality factors of P- and S-waves. Compared with the elastic characteristics of undeformed coals, such as P- and S-wave velocity ratios or Poisson's ratio, those of deformed coals generally decrease and the P-wave quality factors are less than those of S-waves. Moreover, the analysis of the relationship between pore structure and elastic modulus shows a better correlation between the P- and S-wave velocities and effective porosity, pore volume and specific surface area. Also, there are similar relationships between the pore structure and the Young's and shear moduli. However, there are no such correlations with other moduli. Correlations between these elastic moduli, pore structure, coal rank and density were not found for the various samples of deformed coals, which is consistent with only structural destruction occurring in the deformed coals with other physical properties remaining unchanged. The experimental results show that it is possible to predict the deformation of coals with multi-component seismic elastic inversion.
Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offsetdomain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.