We investigate the zero dissipation limit problem of the one-dimensional compressible isentropic Navier-Stokes equations with Riemann initial data in the case of the composite wave of two shock waves. It is shown that the unique solution to the Navier-Stokes equations exists for all time, and converges to the Riemann solution to the corresponding Euler equations with the same Riemann initial data uniformly on the set away from the shocks, as the viscosity vanishes. In contrast to previous related works, where either the composite wave is absent or the effects of initial layers are ignored, this gives the first mathematical justification of this limit for the compressible isentropic Navier-Stokes equations in the presence of both composite wave and initial layers. Our method of proof consists of a scaling argument, the construction of the approximate solution and delicate energy estimates.
We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.