The depth information of the scene indicates the distance between the object and the camera,and depth extraction is a key technology in 3D video system.The emergence of Kinect makes the high resolution depth map capturing possible.However,the depth map captured by Kinect can not be directly used due to the existing holes and noises,which needs to be repaired.We propose a texture combined inpainting algorithm in this paper.Firstly,the foreground is segmented combined with the color characteristics of the texture image to repair the foreground of the depth map.Secondly,region growing is used to determine the match region of the hole in the depth map,and to accurately position the match region according to the texture information.Then the match region is weighted to fill the hole.Finally,a Gaussian filter is used to remove the noise in the depth map.Experimental results show that the proposed method can effectively repair the holes existing in the original depth map and get an accurate and smooth depth map,which can be used to render a virtual image with good quality.
Variable size motion estimation (ME) and disparity estimation (DE) are employed to select the best coding mode for each macroblock (MB) in the current joint multiview video model (JMVM). This technique achieves the highest possible coding efficiency, but it results in extremely large computation complexity which obstructs the multiview video coding (MVC) from practical application. This paper proposes an adaptive early termination of fast mode decision algorithm for MVC. It makes use of the coding information of the corresponding MBs in neighbor view based on inter-view correlation to early terminate the mode decision procedure. Experimental results show that the proposed fast mode decision algorithm can achieve computational 50% computation saving with no significant loss of rate distortion (RD) performance.
Depth estimation is an active research area with the developing of stereo vision in recent years. It is one of the key technologies to resolve the large data of stereo vision communication. Now depth estimation still has some problems, such as occlusion, fuzzy edge, real-time processing, etc. Many algorithms have been proposed base on software, however the performance of the computer configurations limits the software processing speed. The other resolution is hardware design and the great developments of the digital signal processor (DSP), and application specific integrated circuit (ASIC) and field programmable gate array (FPGA) provide the opportunity of flexible applications. In this work, by analyzing the procedures of depth estimation, the proper algorithms which can be used in hardware design to execute real-time depth estimation are proposed. The different methods of calibration, matching and post-processing are analyzed based on the hardware design requirements. At last some tests for the algorithm have been analyzed. The results show that the algorithms proposed for hardware design can provide credited depth map for further view synthesis and are suitable for hardware design.