Catalytic hydrogenation is an important process in the chemical industry. Traditional catalysts require the effective cleavage of hydrogen molecules on the metal-catalyst surface, which is difficult to achieve with non-noble metal catalysts. In this work, we report a new hydrogenation method based on water/ proton reduction, which is completely different from the catalytic cleavage of hydrogen molecules. Active hydrogen species and photo-generated electrons can be directly applied to the hydrogenation process with Cu1.94S-Zn0.23Cd0.775 semiconductor heterojunction nanorods. Nitrobenzene, with a variety of substituent groups, can be efficiently reduced to the corresponding aniline without the addition of hydrogen gas. This is a novel and direct pathway for hydrogenation using non-noble metal catalysts.
We have exploited a new and distinctive combination method that "disperses" elemental Pd into CuS nanoplates. Pd was successfully dispersed by means of the concomitant transformation of CuS into an amorphous sulfide, which formed an intimate metal-sulfide contact via cation exchange and underwent a subsequent reduction. A series of such Pd-dispersed CuS hetero-nanoplates were synthesized with tailored proportions and compositions. By efficient utilization of noble metal atoms and stable anchored active sites, the optimal catalytic performance for the semihydrogenation of phenylacetylene, a probe reaction, was achieved with high selectivity, activity, and stability. We believe that the synthetic strategy described in our study is a feasible means of developing effective metal-sulfide catalysts for organic reactions.
Yu WangZheng ChenRongan ShenXing CaoYueguang ChenChen ChenDingsheng WangQing PengYadong Li