Uniform rice-like CdS particles were synthesized in cyclohexane/Triton X-100/n-pentanol/water quaternary microemulsions. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, and electron diffraction. The results indicate that the size and the shape of the rice-like CdS particles can be influenced by the molar ratio of water to the surfactant(w value) and the reactant concentrations.
Synthesis and assembly of 1-dimentional (1-D) nanostructures and measurement of their electrical and optical properties are very important in fabrication of nanode-vices. Recent developments in this field are summarized in this review. The assembling methods can be divided into two classes: assembly using macroscopic field forces and micro-fluidic-assisted-template-integration. The former can assemble nanowires by controlling direction and intensity of electric or magnetic field, while the latter represents a general assembly strategy for any kind of 1-D nanostructures. The assembly of 1-D nanostructures will make it possible to fabricate nanosensors, nanolasers and nanoscale logic gate circuits for computation.
CdS microspheres were prepared by a hydrothermal microemulsion method in cyclohexane/Triton X-100/pentanol/water at 180℃. The as-prepared samples were characterized by X-ray diffraction analysis, transmission electron microscopy, electron diffraction, energy diffraction X-ray analysis and photoluminescence spectra. It was found that CdS microspheres with diameter of 1.5-2.5μm were aggregated by nanocrystals. The formation mechanism was proposed.