Carbohydrate represents an important part of the soil labile organic carbon pool. Water soluble carbohydrate drives the C cycle in forest soil by affecting microbial activity and hot water extractable car- bohydrate is thought related to soil carbon sequestration due to the asso- ciation with soil aggregation. In a temperate forest region of northeast China, Changbai Mountain, we investigated the abundance, spatial dis- tribution, and seasonal dynamics of cool and hot-water extractable car- bohydrate in soils under mixed broad-leaved Korean pine forest. The concentrations of cool-water extractable carbohydrate (CWECH) in three soil layers (0-5, 5-10, 10-20 cm) ranged from 4.1 to 193.3 g.kg-1 dry soil, decreasing rapidly with soil depth. On an annual average, the CWECH concentrations in soils at depths of 5-10 and 10-20 cm were 54.2% and 24.0%, respectively, of that in the 0-5 cm soil layer. CWECH showed distinct seasonal dynamics with the highest concentrations in early spring, lowest in summer, and increasing concentrations in autumn. Hot-water extractable carbohydrate (HWECH) concentrations in three soil layers ranged from 121.4 to 2026.2 g.kgq dry soil, which were about one order of magnitude higher than CWECH. The abundance of HWECH was even more profile-dependent than CWECH, and decreased more rapidly with soil depth. On an annual average, the HWECH concentration in soils 10-20 cm deep was about one order of magnitude lower than that in the top 0-5 cm soil. The seasonality of HWECH roughly tracked that of CWECH but with seasonal fluctuations of smaller amplitude. The car- bohydrate concentrations in cool/hot water extracts of soil were positively correlated with UV254 and UV2s0 of the same solution, which has implications for predicting the leaching loss of water soluble organic carbon.
细根(直径≤2mm)是植物吸收水分和养分的重要器官,细根通过呼吸作用和周转过程向土壤输送有机质(Jackson et al.,1997;王政权等,2008)。细根生物量虽然仅占植物体总生物量的5%左右,但由于细根生长和周转迅速,其生长量可占森林初级生产力的50%~75%(Nadelhoffer et al.,1992)。