Mg70.8Zn28Nd1.2(mole fraction) alloy containing icosahedral quasicrystal phase (I-phase) was prepared under conventional metal casting conditions. The microstructure, phase constitution and phase structure of the alloy were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). The resuits showed that the spherical phase in Mg70.8Zn28Nd1.2 alloy was a simple icosahedral quasicrystal with stoichiometric composition of Mg40Zn55Nd5 and quasi-lattice of 0.525 nm. In this research, the as-cast microstructure of Mg70.8Zn28Nd1.2 alloy mainly consisted of Mg40Zn55Nd5 icosahedral quasicrystal phase and Mg7Zn3 columnar crystal matrix. In the growing process of Mg40Zn55Nd5 icosahedral quasicrystal phase, the growth morphology mainly depended on interface energy, adsorption effect of Nd and cooling rate.
Effects of spherical quasi-crystal contained in Mg-Zn-Y-Mn master alloy on the microstructure and as-cast mechanical properties of ZA155 high zinc magnesium alloy have been investigated by means of optical microscopy,XRD,SEM,EDS,tensile test,impact test and hardness test.Experimental results show that the addition of spherical quasi-crystal contained in the Mg-Zn-Y-Mn master alloy into the ZA155 high zinc magnesium alloy resulted in grain refinement of the matrix,changing the morphologies of φ-Al2Mg5Zn2 phase and τ-Mg32(Al,Zn)49 phase from continuous net-like structures to discontinuous strip-like structure and blocky one,respectively.In the present research,the best comprehensive mechanical properties of reinforced ZA155 high zinc magnesium alloy has been obtained when 5.0wt% spherical quasi-crystal was introduced from the Mg-Zn-Y-Mn master alloy into the target alloy system.In such case,the room-temperature tensile strength reached 207 MPa,about 23% higher than that of the base alloy;the impact toughness peaked at 5.5 J/cm2,about 40% higher than that of the base alloy;and the elevated-temperature tensile strength reached 203 MPa,indicating improved heat resistance.