The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light, an initial forming process is unnecessary for the production of transparent memory. Fittings to the current-voltage curves reveal the interfacial conduction in the devices. The first-principles calculation indicates that the oxygen vacancies in cubic BaSnO3 will form the defective energy level below the bottom of conduction band. The field-induced resistance change can be explained based on the change of the interracial Schottky barrier, due to the migration of oxygen vacancies in the vicinity of the interface. This work presents a candidate material BaSnO3 for the application of resistive random access memory to transparent electronics.
Stoichiometric Ba(MnxTi(1-x)O3) (BMT) thin films with various values of x were deposited on Si(111) substrates by the sol-gel technique. The influence of Mn content on the optical properties was studied by spectroscopic ellipsometry (SE) in the UV–Vis–NIR region. By fitting the measured ellipsometric parameter (Ψ and Δ) with a four-phase model (air/BMT+voids/BMT/Si(111)), the key optical constants of the thin films have been obtained. It was found that the refractive index n and the extinction coefficient k increase with increasing Mn content due to the increase in the packing density. Furthermore, a strong dependence of the optical band gap Eg on Mn/Ti ratios in the deposited films was observed, and it was inferred that the energy level of conduction bands decreases with increasing Mn content.