Based on multiple proxies from the Southern Hemisphere, an austral summer (December-January-February: DJF) Antarctic Oscillation Index (AAO) since 1500 A.D. was reconstructed with a focus on interannual to interdecadal variability (<50 a). By applying a multivariate regression method, the observational AAO-proxy relations were calibrated and cross-validated for the period of 1957 89. The regressions were employed to compute the DJF-AAO index for 1500 1956. To verify the results, the authors checked the explained variance (r 2 ), the reduction of error (RE), and the standard error (SE). Cross-validation was performed by applying a leave-one-out validation method. Over the entire reconstruction period, the mean values of r 2 , RE, and SE are 59.9%, 0.47, and 0.67, respectively. These statistics indicate that the DJF-AAO reconstruction is relatively skillful and reliable for the last ~460 years. The reconstructed AAO variations on the interannual and interdecadal timescales compare favorably with those of several shorter sea level pressure (SLP)-based AAO indices. The leading periods of the DJF-AAO index over the last 500 years are ~2.4, ~2.6, ~6.3, ~24.1, and ~37.6 years, all of which are significant at the 95% level as estimated by power spectral analysis.
利用AOML(Atlantic Oceanographical and Meteorological Laboratory)SVP漂流浮标的海表面温度数据,针对30°S以南的南大洋海域,对目前主要使用的微波遥感产品(AMSR-E,Ad-vanced Microwave Scanning Radiometer for the Earth Observing System)反演的SST进行了较为系统的评估。结果表明,AMSR-E SST比浮标数据偏冷,偏差为-0.01℃,标准差为0.70℃。夏季的偏差为0.004℃,标准差为0.64℃;冬季的偏差为-0.06℃,标准差为0.75℃,冬季的偏差和标准差较大。温差ΔT受流速影响,随着流速的增大而减小,且这种趋势在夏季更为显著。具备托伞结构的浮标与总体情况基本一致,而无托伞结构的浮标受流速的影响要大一些。同时,温差ΔT受水汽的影响,随着水汽的增加而减小,且这种影响在冬季更大一些。进一步对4个穿极和绕极浮标的追踪分析表明,温差ΔT受大洋海流系统的影响显著。在海流大的大西洋边界流和南极绕极流中,温差ΔT的不确定性要明显大于总体情况。