The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated. By using the Fourier transform, the problem can be solved with the help of a pair of triple integral equations in which the unknown variable is jump of displacement across the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter, the circular frequency of the incident waves and the thickness of the strip upon stress, electric displacement and magnetic flux intensity factors of cracks.
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations in which the unknown variables are the jumps of displacements across crack surfaces. To Solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.