Magnetic rotation in 82Rb has been investigated for the first time by g-factor measurement of intra-band states of the magnetic-rotational band built on the 11- state. The g-factors were measured by a TMF-IMPAD method and calculated by a semi-classical model of independent particle angular momentum coupling assumption. The g-factors and deduced shears angles decrease with the increasing of spin along the band, illustrating a step-by-step alignment of the valence protons and neutrons. The rapid alignment of the valence neutrons leads to a decrease of g-factors. The present results vividly reveal the shears mechanism of magnetic rotation.
The proton alignment in 82Sr has been investigated by the g-factor measurements of the ground state rotational band levels up to spin I = 8+. The g-factors were measured by a transient-magnetic-field ion implantation perturbed angular distribution method. The obtained g-factors increase with the increasing of spin along the band and clearly show the g9/2 proton alignment that starts at I =6+.
Nuclear structure of proton-rich unstable nucleus 28P has been studied by measuring its g-factor for the first time. The g-factor of 28P (Iπ =3+, T1/2=270.3 ms) was measured by means of β-NMR technique combined with the new polarization technique for charge exchange reaction product in the intermediate energy heavy ion collisions. The obtained g-factor of g=0.1028(27) is very much quenched from the Schmidt value, but is well reproduced by the shell model (+0.102). In connection with the magnetic moment of the mirror partner and the β-ray transition probability, the orbital angular momenta and intrinsic spins of protons and neutrons have been determined as lp =0.43(29), ln =1.85(29), Sp)=0.28(4), and Sn =0.44(4).
郑永男周冬梅K. MatsutaM. MiharaM. FukudaD. NishimuraJ. KomurasakiD. IshikawaR. MatsumiyaT. NagatomoT. IzumikawaS. TakahashiH. HiranoT. OhtsuboS. MomotaY. NojiriA. KitagawaM. KanazawaM. TorikoshiS. SatoT. MinamisonoJ. R. AlonsoG. F. KrebsT. J. M. Symons袁大庆左翼范平T. Suzuki张锡珍朱升云
The extoic structure of 29P was investigated by measuring its magnetic moment in the ground state with β-NMR method. We got the experimental value of 1.2346 μN after diamagnetism correction. It is very close to the calculated value of 1.1009 μN computed with shell model. The shell model calculation also gave a proton density distribution of 29P with a long tail. The present results show that 2s1/2 proton in the 29P may lead to the proton-skin structure.
We investigate the equation of state of asymmetric nuclear matter and its isospin dependence in various spin-isospin ST channels within the framework of the Brueckner-Hartree-Fock approach extended to include a microscopic three-body force(TBF) . It is shown that the potential energy per nucleon in the isospinsinglet T = 0 channel is mainly determined by the contribution from the tensor SD coupled channel. At high densities,the TBF effect on the isospin-triplet T = 1 channel contribution turns out to be much larger than that on the T =0 channel contribution. At low densities around and below the normal nuclear matter density,the isospin dependence is found to come essentially from the isospin-singlet SD channel and the isospin-triplet T = 1 component is almost independent of isospin asymmetry. As the density increases,the T = 1 channel contribution becomes sensitive to the isospin asymmetry and at high enough densities its isospin dependence may even become more pronounced than that of the T = 0 contribution. The present results may provide some microscopic constraints for improving effective nucleon-nucleon interactions in a nuclear medium and for constructing new functionals of effective nucleon-nucleon interaction based on microscopic many-body theories.