Huaguang Sag is located in the deep seawater area of Qiongdongnan Basin, and its tectonic position belongs to the intersection of NE-trending, SN-trending and NW-trending tectonic systems in the continental margin of the Northwest South China Sea. To investigate the initial rifting process and further more the dynamics mechanism of Huaguang Sag, this paper sets up the structure model of basement which mainly makes up with several depression-controlling faults, and simulates the initial rifting process of Huaguang Sag by the FLAC software. The simulation results show that only affected by the S-N trending extensional stress, the rifting center appears in northern boundary basement faults(two NEE-trending and NWW-trending faults) of Huaguang Sag while does not take place at the NNE-trending and NE-trending basement fault zone in the middle sag, and doesn’t match the current pattern that the basement fault plays a main role in controlling the sediment. In the other case, affected by the S-N trending and E-W trending extensional stress at the same time, the areas of the northern boundary faults zone and internal NNE-trending basement faults zone come to be rifting center quickly, the sedimentary is controlled by the main basement faults to different degrees, and is consistent with the tectonic-sedimentary framework of Huaguang Sag which obtained by the data of geophysical interpretation. In combination with the analysis of regional tectonic background, the paper proposes that two remote tectonic effects occurred by the collision of India-Eurasian Plate: One remote effect was the rotational extrusion of Indo China Block, which led to form a series of NE-trending and NNE-trending basement faults, as well as the E-W trending tensile stress field in Huaguang Sag. The other remote effect was that the deep mantle material of South China Block flowed southward, which resulted in the S-N trending extensional rifting of the lithosphere in northern South China Sea, and finally formed a series of EW-trending and NEE-tre
The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.
Cai ZhourongHuang QiangtaiXia BinLii BaofengLiu WeiliangWan Zhifeng